

# ULTRAFILTRATION & MICROFILTRATION

UF / MF

Ultrafiltration (UF) and Microfiltration (MF) enable the filtration of small suspended particles found in different types of water sources. UF and MF modules are made from hollow fiber membrane with pore sizes ranging from 0.01 µm to 0.1 µm.



City of Delaware, Ohio, United States



Emmons County, Colorado, United States

### MEMBRANE FILTRATION PROCESSES

Membrane filtration rejects microorganisms and suspended solids greater than the pore size, typically resulting in turbidities less than 0.1 NTU and SDI's less than 3.0. This high quality filtrate makes UF/MF the preferred pretreatment process for NF/RO and other unit operations when treating wastewater, seawater and surface water.

In addition, UF & MF have a verifyable log removal value (LRV) for cryptosporidium & giardia of greater than 5.0, allowing it to be the primary treatment for potable water applications that require EPA and state health departments certification for surface water and ground water under the influence of surface water sources. Membrane filtration has four modes of operation; filtration, backpulse (i.e. backwash), cleaning-in-place (CIP) and membrane integrity testing.

In filtration, feed water is "pushed" through the membrane pores at low pressure where a portion of the filtered water or filtrate is stored for backpulsing and cleaning and the remaining filtrate continues to downstream processes or potable water storage. Backpulse is a reversal of filtrate flow to displace solids that have accumulated on the membrane surface and flows to drain. Backpulse frequency is based on the feedwater quality, typically every 20-60 minutes. Cleaning is done to remove materials that are not removed with backpulse. Chemicals used for cleaning are typically, acids, bases and oxidants. Membrane Integrity testing (MIT) is done periodically to verify there are no leaks in the membrane that would otherwise allow bypass of feedwater and harmful microorganisms. MIT is performed by using pressurized air and monitoring the pressure decay rate.



## ULTRAFILTRATION & MICROFILTRATION



Clifton, Colorado, United States Engineered with FiberFlex™

#### FiberFlex™

Unlike spiral wound membranes whose sizes and membrane filtration areas have been standardized across all or most membrane suppliers, UF modules can differ from one supplier to another in the matter of their dimensions, their process connections, and their operating sequences. Therefore, a typical UF system fitted with a specific brand and model of UF modules must conserve the same brand and model throughout its life span. This imposes unnecessary limitations to the system's owner when purchasing new modules for its system.

H2O Innovation has developed a flexible ultrafiltration skid to accommodate several types of modules and allow owners and engineers to take advantage of a much wider membrane spectrum. The FiberFlex<sup>™</sup> is an open source equipment that simplifies membrane purchases and change overs.



Wemindji, Quebec, Canada



Robson Raspberry, British Columbia, Canada

| PROJECT                      | WATER<br>TREATED                                             | APPLICATION    | FLOW RATE         |
|------------------------------|--------------------------------------------------------------|----------------|-------------------|
| Carmel By the Sea, CA, USA   | Alluvial Well                                                | Drinking Water | 100 gpm           |
| Statoil Hydro, CAN           | Well Water                                                   | Process Water  | 110 gpm           |
| Stanton Power Plant, ND, USA | Surface Water                                                | Process Water  | 190 gpm           |
| Worker's Camp, AB, CAN       | Well Water                                                   | Drinking Water | 66 gpm<br>148 gpm |
| Wemindji, QC, CAN            | Surface Water                                                | Drinking Water | 304 gpm           |
| Lynn Lake, MB, CAN           | Surface Water                                                | Drinking Water | 320 gpm           |
| Worker's Camp, AB, CAN       | Surface Water                                                | Drinking Water | 2 x 275 gpm       |
| Costa Azul, Mexico           | Seawater                                                     | Drinking Water | 774 gpm           |
| Robson Raspberry, BC, CAN    | Surface Water                                                | Drinking Water | 900 gpm           |
| North Burleigh, ND, USA      | Ground Water –<br>Under Direct Influence<br>of Surface Water | Drinking Water | 1 506 gpm         |
| Emmons County, CO, USA       | Surface Water                                                | Drinking Water | 2 083 gpm         |
| Clifton, CO, USA             | Surface Water                                                | Drinking Water | 11 111 gpm        |
| City of Delaware, OH, USA    | Ground and<br>Surface Water                                  | Drinking Water | 468 748 gpm       |

H2O Innovation designs, manufactures and commissions UF and MF systems for a number of water filtration applications. The company's expertise is based on its ability to determine the best combination of features for an optimal performance. Our team of experts works closely with industry leaders to carefully select the membrane modules, the pumps, and the cleaning and filtration modes that are the most suitable for the application.

#### PARTIAL UF REFERENCE LIST