Troubleshooting BETE XA nozzles

The BETE XA series is a multi-component air atomizing system. Because of the number of combinations of hardware assemblies and fluid/air caps we are often asked many questions regarding assembly, installation, and operation. The XA system was designed to allow the swift exchange and replacement of caps, bodies and tips. The system provides a wide range of spray patterns and simplifies maintenance.

The XA series assemblies may consist of anywhere from 7 to 11 parts.

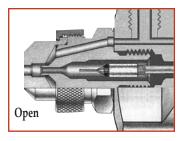
Please be certain to read all instructions carefully before assembling or disassembling the nozzle. Damage to these assemblies can occur if these procedures are not followed.

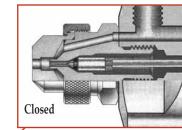
XA Components

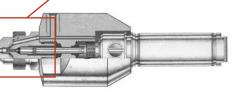
BETE XA nozzles consist of a body, a spray set-up, hardware assemblies, and optional mounting devices.

The body is the base component. It contains the connection ports for the liquid and air supplies, a connection for the spray set-up, and may contain a connection for a hardware assembly.

The spray set-up consists of an air cap and a fluid cap. The air cap and fluid cap combination control the spray performance, including flow rates and spray pattern.


Optional hardware assemblies allow either shutoff or shutoff and clean-out of the fluid cap. Hardware assemblies may be actuated manually (B, C, and D hardware) or pneumatically (E or F hardware). Not all bodies accept all hardware.


Mounting devices offer a method of holding the nozzle in a fixed location. They attach to the fluid cap.


Operation of the air cylinder of the E or F hardware requires a minimum air pressure of 30 psi to retract the rod. Failure to provide sufficient air pressure is one of the most frequent causes of poor nozzle performance. The E or F hardware feature a built-in air cylinder which allows liquid flow to be shut off at the nozzle tip, resulting in precise, intermittent application of liquid. When air pressure is released a spring causes the cylinder to return to the closed position. For the F clean-out option, the pin pushes accumulated material from the liquid orifice as it returns. The clean-out pin is not able to remove material from the orifices in the air cap.

Standard seal materials limit the XA to use at temperatures less than 400°F. Materials allowing use at higher temperatures are available by special request.

All spray set-ups fit on all bodies. All spray set-ups may be used with hardware, however the available hardware is limited by the chosen body style.

The 00 and 03 bodies can accept all hardware assemblies. Complete nozzle assemblies initially sold with manual hardward (B, C, or D) may be upgraded in the field to automatic hardware (E or F).

The square 00 body with E or F hardware requires two separate air lines and more complex piping.

The 01 body features a consolidated air inlet combining both the atomizing air and cylinder air in a single line, resulting in simplified piping layouts. The 01 body can be used only for applications where the atomizing air pressure is ABOVE 30 psi.

The 01 and 02 bodies simplify external air line connections by fixing the orientation of the air, liquid and cylinder inlets.

The 01 and 02 bodies may only be used with the E or F hardware.

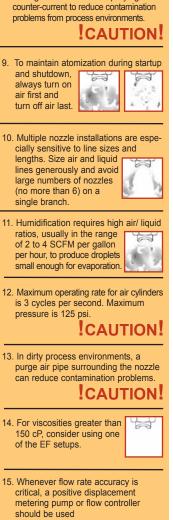
The 02 body requires two separate air lines, one to supply atomizing air and one to supply operating air to the cylinder. The two air lines allow the use of atomizing air at pressures both BELOW and ABOVE 30 psi, while maintaining the minimum 30 psi to the cylinder.

The 05, 06, 07, and 08 bodies do not accept any hardware.

 Adequately size air and liquid lines to maintain required pressures at each nozzle. (consult air and water flow charts on page 4)

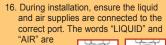
- 2. Each siphon nozzle must have a separate liquid feed line from the reservoir.
- For extreme temperatures and a range of chemicals, consult chart of options for special gaskets, sealants and Loctite[®] adhesives.

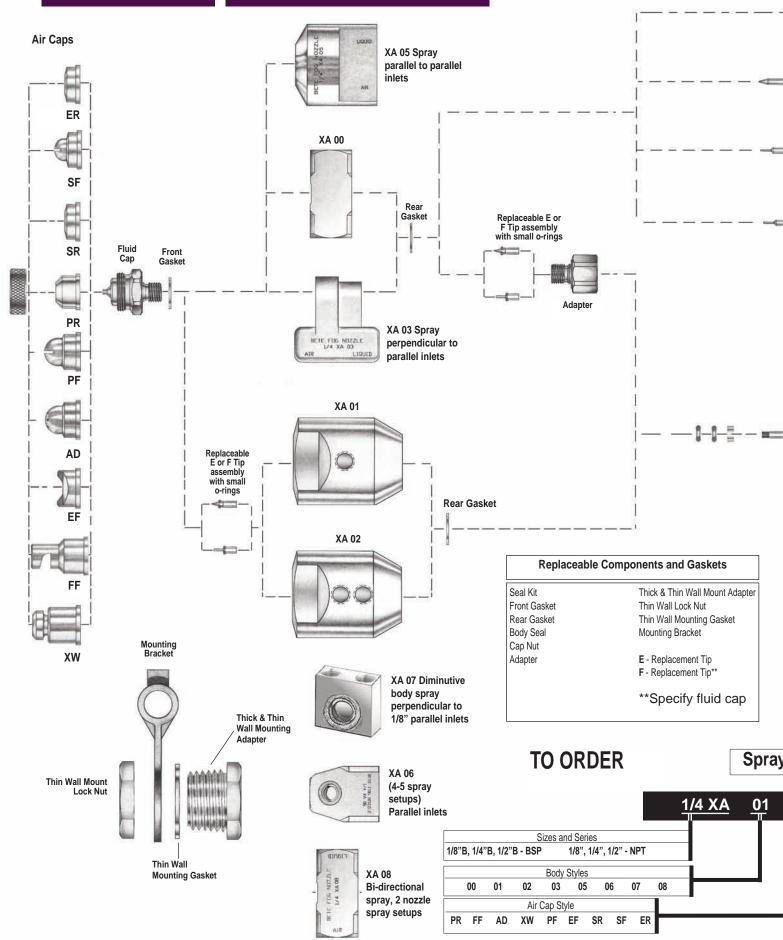
CAUTION!

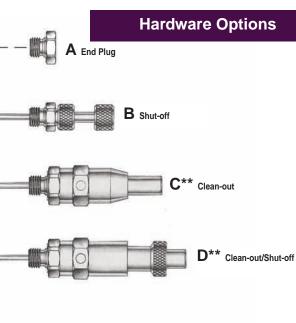

 To maintain adequate air pressure (30 psig min) for cylinder operation, use the 02 body if atomizing air pressure to the nozzle is expected to fall below 30 psi.

5. For severe chemicals and abrasive liquids, consult factory for optional nozzle materials. CAUTION

6. Flush out air and liquid lines before connecting nozzles to clear out loose material which could cause pluggage.


 Install air and liquid pressure gauges close to the nozzle location(s) to allow accurate control of pressures.


cylinder fails


8. As a general rule avoid spraying

Assembly Instructions For A, B, C and D Hardware

Before disassembling or reassembling, please review the diagram on the left to make sure you have the parts necessary to complete your choice of set-up.

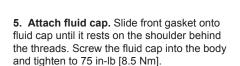
These instructions are applicable to the 00 and 03 body and hardware options A-D. For illustration, the figures are shown with the 00 body and the C hardware option.

1. Attach gasket. Slide rear gasket onto A, B, C, or D hardware until it rests on the shoulder behind the threads (Figure 1).

2. Thread into body. Thread the hardware and gasket from step 1 into the back of the 00 or 03 body. Snug the hardware in place.

3. Attach fluid cap. Slide front gasket onto fluid cap until it rests on the shoulder behind the threads. Screw the fluid cap

Assembly Instructions for E and F Automatic Hardware


!WARNING! The needle assembly can be severely damaged if excessive torque is applied during disassembly or reassembly.

1. Install bushing and o-rings. Slide relief bushing onto cylinder rod with slotted side toward the cylinder body. Slide the two larger o-rings onto the cylinder rod. Push the bushing and the o-rings all the way down the rod (Figure A).

2. Attach adapter. For 00 and 03 bodies only, slide the adapter down the cylinder rod and thread it onto the cylinder body.

3. Install rear gasket and connect hardware. Slide the rear gasket down the cylinder rod, resting it on the shoulder behind the threads of the cylinder (01 and 02 bodies) or the threads of the adapter (00 and 03 bodies). Insert cylinder rod through body. HAND TIGHTEN into the body (Figure B).

4. Attach tip and small o-ring. Use supplied Loctite® per manufacturer's directions to coat threads on end of cylinder rod as shown in Figure C. Screw tip to cylinder rod. HAND TIGHTEN. Roll smaller o-ring onto tip (note that the smaller o-ring may already be installed on the tip at the factory).
WARNING: Do not mar or gouge tip surface when assembling; be sure to keep tip surface smooth.

into the body and tighten to 75 in-lb [8.5

4. Attach air cap. Rest the air cap on the fluid

cap and secure it in place with the cap nut

Nm] (Figure 2).

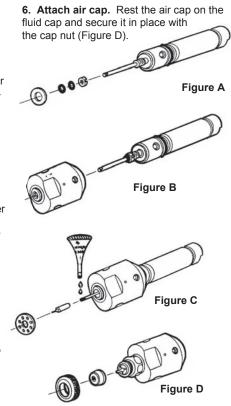

(Figure 3).

Figure 1

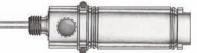
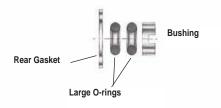
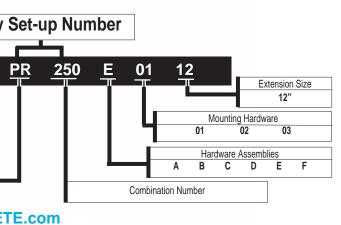

Figure 2

Figure 3

R.




E Air-operated Shut-off

F** Air-operated Clean-out/Shut-off ** Fluid cap must be specified with F hardware (but not E hardware)

Seal Kit: 39572

Loctite is a registered trademark of Henkel Corporation. BETE is a registered trademark of BETE Fog Nozzle, Inc.

What you need to consider when designing your XA system

· Confirm that the correct nozzle flow rate, spray pattern, and operating pressures have been selected and supplied for the application, that the correct mounting and accessorv hardware such as thick wall adapters and clean out needles are installed on the nozzle and that the correct number of nozzles is available

· The header (for a multiple nozzle installation) and supply lines should be sized generously to prevent imbalance between liquid and air pressures for each nozzle and excessive pressure losses along the header that could cause erratic nozzle operation.

· Size the header to accommodate the total flow to all the nozzles on the header. Headers that are longer than 10 feet or that have more than 10 nozzles may be fed from both ends to minimize pressure differences along their length.

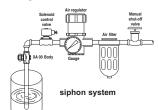
· Be sure to account for the air pressure according to the instructions on the chart when sizing the air piping.

· The line supplying air to an automatic cylinder can usually be 1/8" even when multiple nozzles are used since the volume flow of air to the cylinders is very small.

· When the nozzles are supported by at least one rigid pipe or wall, plastic tubing often makes connections fast and easy, but be certain the inside diameters of the tubing to be used are as large as those in the corresponding pipe size.

· Filters for the air and water lines should be placed upstream of pressure regulators and solenoid valves. Regulators and pressure gauges should be placed as close to the nozzles or header inlet as possible to allow the regulator to respond rapidly to pressure changes, especially when the nozzles are being cycled on and off automatically.

· Solenoid valves are generally installed downstream of the pressure regulator and as close to the nozzle as possible, especially if they are to be used to cycle the nozzles on and off.


Filters,

deposits.

strainer below the

liquid level.

regulators and valves

· Automatic operation requires at least one three-way valve so that air can escape from the cylinder and allow the spring to push the clean-out or clean-out/shut-off needle into place. Faster operation is usually possible when you control the cylinder separately using the 00, 02, or 03 body. Using the 01 body requires the air to be exhausted from the larger atomizing air supply piping to allow the cylinder to return to the closed position.

· A complete XA system diagram with filters, regulators and solenoid valves is shown to the right and in the XA Accessories brochure.

· You must correctly size the supply piping to ensure that adequate air and water are supplied to the nozzle. Correct size is especially important in multi-nozzle systems where differences in air and water pressures from one nozzle to the next can cause erratic operation. Several charts are included to help you choose the correct pipe sizes.

Flow of air through schedule 40 steel pipe For lengths of pipe other than 100 feet, the pressure drop is proportional to the length.

Thus, for 50 feet of pipe, the pressure drop is one-half the value given in the table; for 300 feet, three times the given value, etc.

The cubic feet per minute of compressed air at any pressure is inversely proportional to the absolute pressure and directly proportional to the absolute temperature

The pressure drop is also inversely proportional to the absolute pressure and directly proportional to the absolute temperature.

3-Way Solenoid Valve for E and F Automatic Hardwar

To determine the cubic feet per minute of compressed air at any temperature and pressure other than standard conditions, use the equation:

$$\left(\frac{14.7}{P+14.7}\right)\left(\frac{460+7}{520}\right)$$
 (SCFM) = ACFM

Therefore, to determine the pressure drop for inlet or average pressure other than 100 psi and at temperatures other than 60°F, multiply the values given in the table by the ratio:

$$\left(\frac{100+14.7}{P+14.7}\right)\left(\frac{460+T}{520}\right)$$

where:

"P" is the inlet or average gauge pressure in pounds per square inch. and.

T is the temperature in degrees Fahrenheit under consideration.

Example: Suppose you need to supply two XAPR300 nozzles with 60 psi water and 50 psi air as shown in the diagram below. Water

Total flow = (59 gph) x 2 / 60 = 1.96 gpm Select 3/8" or larger pipe

Air Total Flow = $(4.6) \times 2 = 9.2$ scfm

Note that tabulated pressure losses will need to be multiplied by

$$\binom{100+14.7}{P+14.7} = \binom{114.7}{50+14.7} = 1.77$$

to obtain losses at 50 psi. Select 3/8" or larger pipe.

Water and Air Flow Data

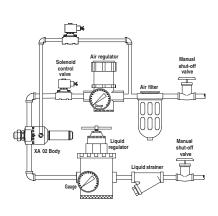
ELOW OF WATER THROUGH SCHEDULE 40 STEEL PIE

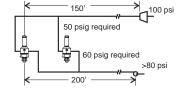
Pressure Drop per 100 feet and Velocity in Schedule 40 Pipe for Water at 60°F																	
Discharge		Veloc- ity	Press. Drop	Veloc- ity	Press. Drop	Veloc- ity	Press. Drop	Veloc- ity	Press. Drop	Veloc- ity	Press. Drop	Veloc- ity	Press. Drop	Veloc- ity	Press. Drop	Veloc- ity	Press Drop
allons	Cubic Ft.	feet	Lbs.	feet	Lbs.	feet	Lbs.	feet	Lbs.	feet	Lbs.	feet	Lbs.	feet	Lbs.	feet	Lbs.
per	per	per	per	per	per	per	per	per	per	per	per	per	per	per	per	per	per
Minute	Second	Second	Sq. In.	Second	Sq. In.	Second	Sq. In.	Second	Sq. In.	Second	Sq. In.	Second	Sq. In.	Second	Sq. In.	Second	Sq. Ir
		1/		1/-		3/8"		1/2"									
.2	0.000446 0.000668	1.13 1.69	1.86 4.22	0.616 0.924	0.359 0.903	0.504	0.159	0.317	0.061	3/4	4"						
.4 .5	0.000891 0.00111	2.26	6.98	1.23	1.61 2.39	0.672	0.345	0.422	0.086	0.301	0.033						
.6	0.00178 0.00178	3.39 4.52	14.7 25.0	1.85	3.29 5.44	1.01	0.751	0.633 0.844	0.240 0.408	0.361 0.481	0.041 0.102	1"		1 1/4"			
	0.00223 0.00446 0.00668	5.65 11.29	37.2 134.4	3.08 6.16 9.25	8.28 30.1 64.1	1.68 3.36 5.04	1.85 6.58 13.9	1.06 2.11 3.17	0.600 2.10 4.33	0.602 1.20 1.81	0.155 0.526 1.09	0.371 0.743 1.114	0.048 0.164 0.336	0.429	0.044	1 1	/2"
	0.00891	2		12.33	111.2	6.72	23.9	4.22	7.42	2.41	1.83	1.49	0.565	0.858	0.150	0.630	0.07
	0.01114 0.01337	0.574	0.044	21	/2"	8.40 10.08	36.7 51.9	5.28 6.33	11.2 15.8	3.01 3.61	2.75 3.84	1.86 2.23	0.835 1.17	1.073 1.29	0.223 0.309	0.788 0.946	0.10 0.14
0	0.01782	0.765	0.073	0.670	0.046	13.44	91.1	8.45 10.56	27.7 42.4	4.81 6.02	6.60 9.99	2.97 3.71	1.99 2.99	1.72	0.518	1.26 1.58	0.24
5	0.03342	1.43	0.224	1.01	0.094	0.868	0.056		/2"	9.03	21.6 37.8	5.57	6.36	3.22	1.63	2.37	0.75
0 5	0.04456	2.39	0.375	1.34	0.158	0.868	0.056	0.812	0.041	12.03	37.8	7.43 9.28	10.9	4.29	4.22	3.16	1.28

FLOW OF AIR THROUGH SCHEDULE 40 STEEL PIPE

SCFM at 60°F & 14.7 psia	ACFM at 60°F at 100 psig	Pressure Drop of Air per 100 ft of Sch 40 Pipe For Air at 60°F and 100 psig											
1 2 3 4	0.128 0.256 0.384 0.513 0.641	1/8 " 0.361 1.31 3.06 4.83 7.45	1/4" 0.083 0.285 0.605 1.04 1.58	3/8" 0.018 0.064 0.133 0.226 0.343	0.020 0.042 0.071 0.106	3/4"							
5 6 8 10 15 20	0.641 0.769 1.025 1.282 1.922 2.563	10.6 18.6 28.7	2.23 3.89 5.96 13.0 22.8	0.408 0.848 1.26 2.73 4.76	0.148 0.255 0.356 0.834 1.43	0.037 0.062 0.094 0.201 0.345	1 " 0.019 0.029 0.062 0.102	1 1/4 "	1 1/2"				
25 30 35 40 45	3.204 3.845 4.486 5.126 5.767 6.408		35.6	7.34 10.5 14.2 18.4 23.1 28.5	2.21 3.15 4.24 5.49 6.90 8.49	0.526 0.748 1.00 1.30 1.62 1.99	0.156 0.219 0.293 0.379 0.474 0.578	0.039 0.055 0.073 0.095 0.116 0.149	0.019 0.026 0.035 0.044 0.055 0.067	2'			
50 60 70 80 90	6.408 7.690 8.971 10.25 11.53	0.019 0.023		40.7	8.49 12.2 16.5 21.4 27.0	1.99 2.85 3.83 4.96 6.25	0.578 0.819 1.10 1.43 1.80	0.149 0.200 0.270 0.350 0.437	0.067 0.094 0.126 0.162 0.203	0.01 0.02 0.03 0.04 0.05			

BETE FOG NOZZLE, INC. 50 GREENFIELD STREET GREENFIELD, MA 01301 U.S.A. TEL: 413- 772-0846, FAX: 413-772-6729 www.bete.com, email: sales@bete.com


plying XA nozzles to minimize the potential for clogging. The air filters supplied by BETE remove both water and particulates and are equipped with an automatic drain. The water filters remove particulates larger than 100 mesh and can be equipped with a quick flush drain valve to remove accumulated Liquid strainers for siphon setups should have large areas to minimize pressure losses across the strainer itself. It is also preferable to install the


Thank you for purchasing your nozzles from BETE.

413-772-0846 or visit our website at:

www.bete.com.

pressure system with XA02 body

